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Lesquerella  (Lesquerella  fendleri  (Gray)  Wats.)  seed  oil  has  been  proposed  as  a petroleum  alternative  in
the  production  of many  industrial  products,  but several  crop  management  and  breeding  challenges  must
be  addressed  before  the  crop  will  be grown  commercially.  Lesquerella  canopies  characteristically  exhibit
quite  prominent  and  vibrant  yellow  flowers  at anthesis,  and  remote  detection  of  lesquerella  flowering  pat-
terns can  provide  useful  crop  development  information  to aid  management  and  breeding  decisions.  In  the
present  study,  we  used  a consumer-grade  digital  camera  to collect  images  2 m  above  lesquerella  canopies
throughout  two  growing  seasons.  Biomass  samples  within  0.125  m2 areas  were  also  regularly  collected
and  processed  to obtain  flower  numbers.  Image  processing  algorithms  were  developed  to  extract  infor-
mation on  lesquerella  flower  features  from  the  images.  Key  features  of  the  image  processing  approach
included  an  image  transformation  to  the  hue,  saturation,  and  intensity  (HSI)  color  space  and  a  Monte
Carlo  approach  to  address  uncertainty  in  HSI  parameters  used  for  image  segmentation.  Flower  numbers
were  estimated  from  image-based  flower  cover  percentage  with  root  mean  squared  errors  that  ranged
from 159  to 194  flowers,  which  was better  than  the  reported  results  for other  studies  with  a similar
objective.  Attempts  to  resolve  individual  flowers  were  less  successful  due  to  the  complexity  of  the  flow-
ntensity
esquerella
anagement
onte Carlo
ilseed
henotyping

ering patterns  within  the  image  scenes.  Digital  imaging  offers  an  inexpensive  and  quite practical  means
for  remote  monitoring  of  flowering  patterns  in  lesquerella  canopies.

Published by Elsevier B.V.
aturation

. Introduction

Onset of flowering is a critical development stage for most agri-
ultural crops. Flowering marks the transition from vegetative to
eproductive development, at which time the plants begin to set the
eproductive structures that may  lead to mature grains or fruits.
hese reproductive processes are particularly sensitive to plant
tresses from temperature extremes (Ferris et al., 1998; Ohnishi
t al., 2010) and nutrient and water deficits (Nielsen and Nelson,
998; Moser et al., 2006). Thus, knowledge of flowering onset is
seful information in the development of optimized crop manage-
ent plans that aim to correct nutrient deficiencies or adjust water
anagement strategies during this critical time. The rate of crop

evelopment to anthesis is dependent on plant genetics and sev-
ral environmental factors, such as photoperiod, temperature, and

lant stress levels (Bonaparte, 1975; Johansen et al., 1985). Methods
o rapidly quantify the time to flowering or the flower number are
f interest to breeders who want to select plants with specific flow-

∗ Corresponding author.
E-mail address: kelly.thorp@ars.usda.gov (K.R. Thorp).

926-6690/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.indcrop.2011.04.002
ering characteristics. Such information is also important for current
high-throughout phenotyping efforts that aim to better understand
the link between plant genetics and phenotypic expression of traits,
such as flowering (Montes et al., 2007).

Techniques for remote detection of flowering have been demon-
strated in several common crops, particularly those with prominent
and spectrally distinguishable flowers. For example, Mogensen
et al. (1996) showed that spectral reflectance indices were sensitive
to flowering time in oilseed rape (Brassica napus L.), which displays
vibrant yellow flowers at anthesis. The results of Vina et al. (2004)
demonstrated the use of a spectral index computed from several
visible light bands to detect the emergence of tassels in maize (Zea
mays L.), and Pimstein et al. (2009) developed a spectral index to
monitor emergence of heads in wheat (Triticium aestivum L.). In
another study by Kaleita et al. (2006), several hyperspectral data
processing techniques were used to detect onset of tasseling and
pollen shed in maize. They concluded that the reflectance of maize
canopies was  spectrally unique during the critical tasseling stage,

at which time kernel set is established and grain fill is initiated.

Lesquerella (Lesquerella fendleri (Gray) Wats.) is an alternative
oilseed crop native to the southwestern United States and northern
Mexico. Hydroxylated fatty acids derived from lesquerella seed are

dx.doi.org/10.1016/j.indcrop.2011.04.002
http://www.sciencedirect.com/science/journal/09266690
http://www.elsevier.com/locate/indcrop
mailto:kelly.thorp@ars.usda.gov
dx.doi.org/10.1016/j.indcrop.2011.04.002
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Table 1
Summary of the 2007–2008 and 2008–2009 lesquerella experiments.

Planting 1 Planting 2 Planting 3

2007–2008 Experiment
Planting date 9/28/2007 2/15/2008 3/10/2008
Replications 3 3 3
Sample areas per plot 20 12 0
Biomass samples per plot 16 7 0
Image collection dates 20 10 0
2008–2009 Experiment
Planting date 10/6/2008 1/8/2009 2/6/2009
Replications 3 3 3
Sample areas per plot 12 8 8
K.R. Thorp, D.A. Dierig / Industrial C

eing developed as a biorenewable diesel fuel additive (Geller and
oodrum, 2004; Moser et al., 2008) and as a petroleum substitute in

he production of many industrial products, such as greases, lubri-
ants, cosmetics, paints, inks, and coatings (Dierig et al., 1992). The
ndeterminate and vibrant yellow flowering patterns of lesquerella

ake the crop spectrally intriguing, and application of remote
echniques to detect and monitor flowering patterns in this new
rop should be quite feasible and practical. Recently, Thorp et al.
2011) measured the spectral reflectance of lesquerella canopies
ith a field spectroradiometer and developed a partial least squares

egression model to estimate flower counts. The model estimated
ower counts with root mean squared errors from 251 to 304 flow-
rs. In an alternative approach, Adamsen et al. (2000) used a digital
amera to photograph lesquerella canopies and developed an auto-
atic image segmentation algorithm to estimate flower counts.

mage segmentation is the process of defining regions of similar
haracteristics within a digital image. By regressing manual flower
ounts against the number of image pixels segmented as flow-
rs, they were able to estimate flower counts with a root mean
quared error of 235 flowers. This digital imaging approach was
ubsequently used to assess the response of lesquerella flowering
o nitrogen fertilization and seeding rate (Adamsen et al., 2003)
nd to asses the response of oilseed rape flowering to planting date
Adamsen and Coffelt, 2005).

Application of digital cameras to monitor lesquerella flower-
ng offers several advantages over more traditional remote sensing
pproaches with spectroradiometers. Digital images allow a com-
ined spatial and spectral approach for analyzing crop scenes,
hereas radiometers provide only a point-based spectral mea-

urement. Inexpensive digital cameras are also readily available on
he consumer market, whereas commercial remote sensing instru-

ents are usually quite specialized and more expensive. Given
hese advantages, the objective of this study was to develop a
ovel approach for estimating flower counts from ground-based

mages of lesquerella canopies. The new approach refines the work
f Adamsen et al. (2000) by incorporating an image transformation
o the hue, saturation, and intensity (HSI) color space and by using a

onte Carlo algorithm to address uncertainty in defining the color
pace parameters for flower segmentation.

. Materials and methods

.1. Field experiments

Lesquerella was grown at the University of Arizona’s Maricopa
gricultural Center (MAC) near Maricopa, Arizona (33.067547◦ N,
11.97146◦ W)  over the winters of 2007–2008 and 2008–2009.
he soil type at the site was a Casa Grande sandy loam, classi-
ed as fine-loamy, mixed, hyperthermic, Typic Natrargids. In both
rowing seasons, the field layout consisted of nine experimental
lots, each 20 m × 180 m and hydrologically isolated with border
ikes. Three planting date treatments were replicated three times
ver the nine plots (Table 1). In the 2007–2008 experiment, the
rst and second planting dates were September 28 and February
5, respectively. The third treatment was planted in March, but
oor stand density prevented any useful data from being collected
rom this treatment. In the 2008–2009 experiment, planting dates
ere October 6, January 8, and February 6. All plots were broadcast
lanted at a rate of 12 kg ha−1 using a Brillion planter with a roller
ing. Plots were flood irrigated by siphoning water from a canal
long the southern edge of the field. After crop emergence, multiple

ocations within each plot were randomly selected and flagged for
iomass sampling and recurrent collection of digital images. The
arked areas were each 0.125 m2. In 2007–2008, twenty sample

reas were marked for the first planting while twelve areas were
Biomass samples per plot 8 4 3
Image collection dates 10 6 5

marked for the second planting. In 2008–2009, the total number of
marked areas was twelve, eight, and eight for the first, second, and
third plantings, respectively (Table 1).

2.2. Field measurements

Ground-based digital images were collected at each of the
0.125 m2 sampling locations from emergence until biomass was
destructively sampled at that location. Square frames of white PVC
tubing were constructed and laid within the canopy to delineate
each 0.125 m2 sample area prior to image collection. Additional
images (approximately 24 per plot) were collected while walking
along a 180 m linear transect on the western edge of each plot.
Images were typically obtained in the mid-morning hours. Image
collection occurred on a weekly basis during the 2007–2008 experi-
ment and at a two-week interval during the 2008–2009 experiment
(Table 1).

A digital camera (EOS Digital Rebel XT, Canon U.S.A. Inc., Lake
Success, New York) was  used to collect the images of the les-
querella canopy. The camera was  a high-end consumer instrument
equipped with an 8.2 megapixel complimentary metal–oxide semi-
conductor (CMOS) detector and a red, green, and blue (RGB)
color filtering system. Sixteen-bit digital images with resolution
of 3456 × 2304 pixels were collected and saved to the onboard
CompactFlash card in the RAW image format.

An L-shaped metal pole was fabricated from 2.54 cm square
tubing to suspend the camera at nadir view angle over the crop
canopy. Design of the pole allowed the camera height to be adjusted
between 200 and 350 cm from the soil surface. Throughout each
lesquerella growing season, the camera height was  adjusted to
maintain a distance of approximately 200 cm between the cam-
era lens and the crop canopy. To collect images with the mounted
camera, the remote control device provided by the manufacturer
was  used to trigger the shutter.

Biomass was destructively sampled at one of the 0.125 m2 sam-
pling locations in each plot on a weekly basis during the 2007–2008
experiment and every two  weeks during the 2008–2009 exper-
iment. In 2008, the first planting date treatment was  sampled
sixteen times per plot from January 15 to May 21, and the sec-
ond planting date treatment was  sampled seven times per plot
from May  1 to June 19. In 2009, the first treatment was sampled
eight times per plot from February 3 to May  12, and the second
treatment was sampled four times per plot from April 30 to June
11. The third treatment in 2009 was  sampled three times per plot
from May  13 to June 12. Typically, we overestimated the num-
ber of sampling areas needed to document lesquerella growth and
development over the growing season, and some of the predefined

sample areas remained unsampled at crop maturity (Table 1). To
collect the biomass samples, the square frames of white PVC tubing
were again used to delineate each 0.125 m2 sample area. Samples
were typically collected in the early morning hours. Plant material
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as then immediately processed in the laboratory to obtain esti-
ates of several biophysical properties of the lesquerella canopy.

ounts of lesquerella flowers within each 0.125 m2 area was the
ey measurement used in the present study.

.3. Image processing algorithms

After each image collection outing, proprietary software pro-
ided by the camera manufacturer was used to convert the images
rom the RAW format to the TIF format. This produced three-band
mages in the RGB color space with 16-bit color depth on each
hannel. Images were then transformed to the hue, saturation, and
ntensity (HSI) color space (Gonzalez and Woods, 1992). This trans-
ormation decoupled the intensity (or brightness) information from
he color information in the RGB images, which allowed for thresh-
lding on the more relevant color parameters of hue and saturation.
ince others have found the HSI transformation to be useful for
olor image segmentation in the variable lighting conditions of out-
oor agricultural scenes (Tang et al., 2000), we hypothesized that
n HSI transformation could facilitate image segmentation of yel-
ow flowers within lesquerella canopies. Further image processing
rocedures for extracting information on lesquerella flowers were
onducted as shown in the flow diagram (Fig. 1).

.3.1. HSI transformation
To convert between the RGB and HSI color spaces, RGB pixel val-

es were first normalized to range [0, 1] by dividing by the bit depth
f each channel. The normalized RGB data were then converted to
SI in the range [0, 1] using the following equations:

 = 1
3

(R + G + B) (1)

 = 1 − 3
(R + G + B)

[min(R, G, B)] (2)

 = arccos

{
(1/2)[(R − G) + (R − B)]

[(R − G)2 + (R − B)(G − B)]
1/2

}
(3)

or cases where (B/I) > (G/I), we computed H = 2� − H. Also, to
ormalize hue to the range [0, 1], we let H = H/2�. Transforma-
ions from RGB to HSI color space are ill-conditioned, because a
ingularity exists at R = G = B = 0 and hue is undefined along the
ntensity axis, R = G = B. We  set H = S = 0 at their singularities. Further
etails regarding the RGB and HSI color spaces and transformations
etween them can be found in Gonzalez and Woods (1992) and
ang et al. (2000).

.3.2. Image segmentation
Segmentation of lesquerella flowers was accomplished by

hresholding the images in HSI color space. Boundary conditions
ere based on six parameters, including the maximum and mini-
um  hue, maximum and minimum saturation, and maximum and
inimum intensity. The image segmentation processing step pro-

uced a binary image with 1 indicating pixels that fell within the
oundary criteria and 0 otherwise. Because the quality of image
egmentation is highly dependent on the parameter values used
o specify the boundary conditions (Tang et al., 2000), we  imple-

ented a Monte Carlo approach (discussed below) to reduce the
ubjectivity of boundary condition specification and improve the
eliability of image segmentations.

.3.3. Noise removal

As an optional step in our image processing algorithm, we

ncluded a 5 × 5 median filter convolution for reducing noise and
moothing the segmented binary image (Fig. 1). The specific type
nd size of filter was determined by experimenting with several
Fig. 1. Flow chart for the image processing procedure.

filtering schemes. Although not likely essential for our image anal-
ysis, we  elected to include the median filter convolution for all
image processing results reported herein. After this filtering step,
we counted the number of pixels identified as lesquerella flow-
ers, and this number served as the first image-based metric for
estimation of lesquerella flower counts.

2.3.4. Connected components analysis
A second metric for estimation of flower count was obtained by

performing a connected components analysis on the segmented,
median-filtered, binary image. The purpose of this processing step
was  to identify the total number of disconnected features or ‘blobs’
in the segmented image. Gonzalez and Woods (1992) provide a
basic methodology for this procedure.

2.4. Algorithm implementation

Image processing algorithms were developed using the Inter-
active Data Language (IDL) within the Environment for Visualizing

Images (ENVI 4.5, ITT Visual Information Solutions, Boulder, CO,
USA). An interactive color image segmentation tool with graph-
ics user interface was created to facilitate user implementation
of the image processing algorithms. The tool allows users to con-
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uct supervised image segmentations, manage HSI segmentation
arameters, and perform several batch-mode processes for auto-
atic segmentation of multiple images. Several processing options

an also be selected, including whether or not to perform median
lter convolution, to conduct connected components analysis, or
o compile segmentation results for user-defined regions of inter-
st (ROIs) within the images. In the present study, native ENVI
lgorithms were used to manually draw ROIs corresponding to the
mage area delineated by the 0.125 m2 PVC frame at biomass sam-
ling locations. Further processing of these images focused only on
he area within the image ROIs.

.4.1. HSI parameter selection
To understand the HSI parameter ranges that were appropriate

or segmenting lesquerella flowers, manual supervised segmenta-
ions were conducted on a subset of images using the interactive
olor image segmentation tool. Images were selected based on
heir nearness in time to the actual biomass sampling date at each
ampling location. As a result, our manual segmentations were per-
ormed on the same images that were used to develop relationships
etween the image-based estimates of flower counts and actual
ower counts. A total of 63 images were selected from those col-

ected in the 2007–2008 growing season, and 42 were selected from
hose collected in 2008–2009. For each of these 105 images, the
mage segmentation tool was used to interactively select image
ixels that represented lesquerella flowers, to perform full image
egmentations based on the HSI ranges of selected pixels, to visu-
lly inspect the segmentation result, and to select additional flower
ixels and reprocess until the overall segmentation of lesquerella
owers was deemed adequate by human inspection. This endeavor
esulted in a set of 105 HSI parameter sets that defined lesquerella
owers in images collected over multiple plots on multiple dates
hroughout two growing seasons. All supervised segmentations
ere conducted by the same person to avoid bias in judgement

f adequate segmentations.

.4.2. Monte Carlo sampling
The set of 105 HSI parameter sets obtained through manual

upervised segmentations was used to understand the uncertainty
n the maximum and minimum hue, saturation, and intensity
arameters required for adequate segmentation of lesquerella
owers. Calculation of the mean and standard deviation of these
ix parameter sets defined their normal probability distributions.
ll the images in the complete data set were then processed
sing a Monte Carlo sampling technique to vary the HSI param-
ters used for image segmentation. The HSI parameter values were
teratively and independently sampled from their respective nor-

al  distributions by implementing a random number generator
o computationally randomize the selection. With each sampled
arameter set, images were analyzed for total number of seg-
ented flower pixels and total number of connected components.

 total of 500 Monte Carlo parameter samples were used to pro-
ess images collected over the 0.125 m2 biomass sampling areas,
nd 250 Monte Carlo parameter samples were used to process
mages collected along the western transect of each plot. The num-
er of iterations was selected using a Shapiro–Wilk normality test
o determine the number of sampled parameters needed for nor-

ality at the 0.01 significance level. This demonstrated that the
ampled parameters adequately represented the theoretical nor-
al  distributions from which they were drawn. This Monte Carlo

ampling approach was used to process 974 images of biomass
ampling areas and 1787 transect images from the 2007–2008

rowing season and 356 images of biomass sampling areas and
583 transect images from the 2008–2009 season. Results were
veraged to obtain one value for flower pixel cover percentage and
onnected component number from each image. This approach
nd Products 34 (2011) 1150– 1159 1153

provided image-based metrics for estimating lesquerella flower
counts while considering the uncertainty in the HSI parameter val-
ues used for image segmentation.

2.5. Application

After processing all the photos, simple linear regression models
were built to relate flower pixel number and connected compo-
nent number to the flower count measurements from the biomass
sample areas. Since the lesquerella canopy was sampled more fre-
quently in 2007–2008, we  used the information from this season
to build the regression models. Data from the 2008–2009 season
were then used to independently test the models.

Processing results from images collected along the 180 m tran-
sects were used to demonstrate temporal monitoring of lesquerella
flowering patterns. The regression equations were applied to esti-
mate flower count from the images collected at each location
along the transect on each measurement date. Estimates were then
averaged according to the measurement date and planting date
treatment to generate time-series plots of flower number. These
plots demonstrated the ability of the image processing procedure
to temporally monitor lesquerella flowering patterns over each
growing season.

3. Results and discussion

3.1. Visual example

The image processing result for an example image is given in
Fig. 2, where Fig. 2a shows the original RGB image and Fig. 2b
shows the image segmentation result. Pixels identified as flow-
ers after HSI transformation and image segmentation are marked
with a magenta color, and non-flower pixels are shown in their
original RGB format. Within the ROI defined by the 0.125 m2 PVC
frame, flower cover was 35.5% for this example image. Fig. 2c
demonstrates the image processing result after a 5 × 5 median fil-
ter convolution on the segmented binary image. This processing
step tended to adjust a few scattered pixels in the soil or green
vegetation parts of the image that were incorrectly segmented
as flowers. It also tended to fill holes in the segmented flower
features and produced a better representation of lesquerella flow-
ers overall. A slight adjustment in flower cover percentage, from
35.5% to 34.5%, resulted from this image processing step. Fig. 2d
demonstrates the result of the connected component analysis on
the segmented, median-filtered binary image. Although 150 unique
connected components were present within the image ROI, we  are
using only six primary colors to display them. By comparing Fig. 2a
and d, it is evident that flowers must be well separated in space for
connected component analysis to adequately delineate individual
lesquerella flowers.

3.2. Image segmentation

The mean and standard deviation of the 105 HSI parameter sets
obtained from manual segmentation of images is given in Table 2.
Minimum and maximum hue were 0.12 and 0.18, respectively, cor-
responding as expected to yellow hue in the HSI color space. Hue
parameters were also relatively stable with lower standard devia-
tions than the other parameters. Maximum saturation was 1.0 for
all the HSI parameter sets, indicating that a fully saturated yellow
color was  necessary for adequate segmentation of flowers in all
the photos. Higher standard deviations for the remaining parame-

ters, minimum saturation and maximum and minimum intensity,
demonstrated higher uncertainty in defining their values for flower
segmentations. Likely, the variability in these parameters is related
to the variable outdoor lighting conditions in which the images
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Fig. 2. Example image processing result: (a) original image, (b) segmented image, (c) m
unique  connected components identified. Area of the PVC square was  0.125 m2.

Table 2
Descriptive statistics of HSI parameters from manual image segmentations of
lesquerella flowers. Coefficient of determination (r2) is computed for each HSI
parameter and the resulting percentage of segmented flower pixels in each image.

Mean St. Dev. r2

Min  Hue 0.1216 0.0111 0.002
Max  Hue 0.1768 0.0084 0.013
Min  Sat 0.2902 0.0916 0.022
Max  Sat 1.0000 0.0000 0.086

w
h
fl
r
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fl
d
t
w
d

what complicated the use of the Monte Carlo approach for image
Min  Int 0.3763 0.0584 0.277
Max  Int 0.7513 0.0947 0.003

ere collected. Variation in minimum saturation may  be due to
ot spot effects in the flower areas of the images. Hot spots on
owers were characteristically diluted with white light, thereby
educing the level of purely saturated color and requiring lower val-
es for the minimum saturation parameter to adequately segment
owers. Maximum and minimum intensity parameters inherently

epended on the overall brightness of the image, which was cer-
ainly related to the outdoor lighting conditions when images
ere collected. Histograms of the HSI parameter sets (not shown)
emonstrated normal distributions, which justified the use of the
edian-filtered, segmented image, and (d) median-filtered, segmented image with

Monte Carlo sampling approach to process the remaining images
in the data set.

Coefficients of determination were calculated to assess the rela-
tionship between each of the six HSI parameters and total flower
cover in the manually segmented images. For five of the six param-
eters, the coefficient of determination was less than 0.1, indicating
relatively little correlation between these variables. This further
justified the use of the Monte Carlo sampling approach to image
processing, because manual selections for five of the six HSI param-
eters had no dependence on the amount of flowers present in the
image. A slight correlation of 0.277 existed between the minimum
intensity parameter and flower cover. Likely, this was  the result
of shadowing. As the canopy grew and increased its flower cover,
there was  greater likelihood that some flowers would be shaded
by nearby parts of the plant. This shadowing effect lowered the
intensity of the pixels defining the shaded flowers, and selection
of shaded flower pixels during manual segmentations lowered the
threshold for the minimum intensity parameter. This result some-
processing, because the minimum intensity parameter and flower
cover were not independent. To address the issue, we included code
within the Monte Carlo algorithm to adjust the mean minimum
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Fig. 3. Mean flower cover from the Monte Carlo image segmentation procedure versus flower cover from manual image segmentations for the (a) 2007–2008 and the (b)
2008–2009 growing seasons.
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ig. 4. Mean Monte Carlo flower cover for all images collected over the biomass sam
eason. Error bars represent one standard deviation from the mean on each image c

ntensity parameter based on the mean flower cover calculated
rom previous Monte Carlo iterations. The adjustment to the min-
mum intensity parameter was based on the regression equation
efining the relationship between minimum intensity and flower
over from the manual segmentations.

The standard deviation of flower cover resulting from 500 itera-
ions of the Monte Carlo algorithm was up to 11% for some images.
his demonstrates the high sensitivity of the flower cover estimates
o the input HSI parameters for image segmentation. By computing
he mean flower cover resulting from the Monte Carlo approach, we
imed to obtain a better estimate of flower cover than by relying on
 segmentation result for a single set of HSI parameters. A compari-
on of the mean flower cover from the Monte Carlo procedure to the
ower cover values from manual segmentations demonstrates the
sefulness of the Monte Carlo procedure to generate reliable esti-
areas in the (a) first and (b) second plant date treatments in the 2007–2008 growing
ion date.

mates of lesquerella flower cover (Fig. 3). For the images collected in
the 2007–2008 and the 2008–2009 growing seasons, the root mean
squared errors between flower cover values from Monte Carlo and
manual segmentations were 0.56% and 0.78%, respectively. Coef-
ficients of determination for these variables were 0.91 and 0.87,
respectively. From this, we conclude that the Monte Carlo approach
can provide adequate estimates of lesquerella flower cover, while
also addressing parameter uncertainty associated with image seg-
mentation in HSI color space.

3.3. Predicting flower count
Preliminary analysis of the image processing results for the
2007–2008 growing season provided guidance on how to build
regression models to relate image-based metrics to field measure-
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Fig. 5. Regression analysis of measured flower count versus Monte Carlo flower
cover for the data collected in the 2007–2008 growing season.
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ents of flower count (Fig. 4). These results highlighted some
nforeseen limitations in our field methods that should be cor-
ected in future studies. Primarily, we conclude that lesquerella
owering is a very dynamic temporal process. In the first planting
ate treatment in 2007–2008, the mean flower cover among the
lots progressed from 7% on day of year (DOY) 66–37% on DOY 80.

n just two weeks, flower cover increased by a factor of five. Simi-
arly for the second planting date treatment, the mean flower cover
ncreased from 1% on DOY 115 to 22% on DOY 129. Progression of
owering to an initial peak occurred quite rapidly for both planting
ate treatments. Once the initial peak in flowering was  reached,
owering patterns began to fluctuate, as demonstrated between
OY 80 and DOY 115 for the first planting date treatment. During

his 35-day period, mean flower cover varied by up to 20% with no
lear temporal pattern. Lesquerella flowering was also shown to be
patially variable. Error bars in Fig. 4 represent one standard devia-
ion in flower cover percentage among the areas that were imaged
ach day. One standard deviation in flower cover percentage was
p to 8% in some cases.

We took great care to coordinate the spatial location of imag-
ng and biomass sampling endeavors in the field. However, due
o issues with field labor scheduling, the time difference between
maging and biomass sampling could be up to several days in length.
iven the dynamic temporal nature of lesquerella flowering pat-

erns, this created some problems when attempting to relate flower
over percentage from images to the measured flower counts from
iomass samples. To correct the problem, we implemented a proce-
ure to interpolate the flower cover percentages between imaging
ates, such that the interpolated flower cover percentage matched
he date of biomass sampling. Results from the final image collected
efore biomass sampling was used as one point for interpolating.
ince no images were collected after biomass sampling at a partic-
lar location, we used the mean and standard deviation of flower
over from all images collected on the next imaging date to estimate
he second interpolation point. The interpolation procedure sub-
tantially improved our ability to relate image-based flower cover
ercentages to actual flower counts with meaningful coefficient of
etermination and low root mean squared error. Further improve-
ents were obtained by eliminating from the regression analysis

he information from DOY 88 through DOY 115 in the first plant-
ng date treatment. Since the lesquerella flowering patterns were
uite sporadic during this time, it was uncertain if linear inter-
olation was an appropriate way to temporally correct this data.
egression model fitting then focused only on the earlier (DOY 11
o DOY 80) and later (DOY 122 to DOY 156) portions of the first
lanting date treatment when temporal correction by linear inter-
olation was more justified by the data. All temporally corrected
ower cover percentages from the second planting date treatment
ere included in the regression exercise without problem. To ren-
er this interpolation step unnecessary, future studies should strive
o coordinate crop canopy imaging and biomass sampling in both
ime and space.

Measured flower counts versus Monte Carlo flower cover for the
ata collected in the 2007–2008 growing season are shown in Fig. 5.

 simple linear regression between the two variables resulted in a
oefficient of determination of 0.75, which is slightly lower than
hat obtained by Adamsen et al. (2000).  However, unlike Adamsen
t al. (2000),  we elected not to include an intercept, since it did
ot make physical sense to do so. Zero flower cover should equal
ero flower count. From the regression equation, we  found a multi-
lier of 30.291 to convert from Monte Carlo flower cover to flower
ount. Using this multiplier to convert the flower cover to flower

ount for the 2007–2008 growing season, we computed a root mean
quare error of 159 flowers. This error is substantially lower than
reviously reported attempts to estimate lesquerella flower count
rom both digital images (Adamsen et al., 2000) and hyperspectral
Fig. 6. Predicted flower count (obtained from Monte Carlo flower cover) versus the
measured flower count for the data collected in the 2008–2009 growing season.

remote sensing (Thorp et al., 2011). Our results were also obtained
over a wider range of flower cover, from 0% to 30%, as compared to
Adamsen et al. (2000), whose data ranged from 0% to 10%.

To test the 30.291 multiplier on an independent dataset, Monte
Carlo flower coverages from the 2008–2009 growing season were
converted to flower count and plotted versus measured flower
count (Fig. 6). The resulting root mean squared error between pre-
dicted and measured flower counts was 194 flowers. This error
value is also lower than that previously reported by both Adamsen
et al. (2000) and Thorp et al. (2011).

Results for estimating flower counts from the number of con-
nected components identified in the images were less favorable
than estimates from flower cover percentages (Fig. 7). Moderate
correlations were achieved with coefficients of determination of

0.58 and 0.38 for the 2007–2008 and 2008–2009 growing seasons,
respectively. However, for the approach to make physical sense,
the regression multiplier should ideally be 1.0, and there should be
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Fig. 7. Measured flower count versus the number of connected components 

 direct one-to-one relationship between connected components
nd flower count. In reality, the number of connected components
as consistently less than the measured flower count, and regres-

ion multipliers of 2.35 and 3.32 were required to relate these
wo variables in the 2007–2008 and 2008–2009 growing seasons,
espectively. Likely, the underestimation of flower count by con-
ected components is due to overlapping bunches of flowers in
he images being identified as a single connected component and
ounted as a single flower (Fig. 2d). The problem becomes greater
s flower numbers increase, and flowers become more domi-
ant in the image scene. This idea is supported by the widening
ange of measured flower count as connected component number
ncreases (Fig. 7). Adamsen et al. (2000) was able to achieve higher
orrelations between connected components and flower counts;
owever, flower cover was not more than 10% in their images.
e have images with flowers covering more than 30% of the area.

damsen et al. (2000) also did not demonstrate a one-to-one rela-
ionship between connected component number and flower count.
iven the spatial complexity of lesquerella flowering, we favor
n approach that uses total flower pixel number or flower cover
ercentage to estimate flower counts, rather than attempting to
egment individual flowers. For our data, the former approach was
ore practical than the latter.

.4. Monitoring flower count

Application of the image processing algorithms to the images
ollected along the 180 m transect in each plot demonstrated the
bility of the procedure to monitor lesquerella flowering patterns
or each of the planting date treatments. Of particular interest
s the ability of the procedure to identify the day of year (DOY)
r days after planting (DAP) that peak flowering occurred. For
he 2007–2008 experiment, the average peak flowering date was

arch 20 (DOY 80; DAP 174) for the first planting (Fig. 8). Flow-
ring patterns for this treatment then fluctuated for 49 days until

ay  9 (DOY 129; DAP 223) before permanently declining. A similar

owering pattern was observed from concurrent remote sensing
easurements of the canopy, although the actual peak flowering

ate was observed on April 24 (DOY 115; DAP 209) with the spec-
ated in images from the (a) 2007–2008 and (b) 2008–2009 growing seasons.

tral reflectance approach (Thorp et al., 2011). Peak flowering was
May  14 (DOY 135; DAP 89) for the second planting in 2007–2008.
The results demonstrated a notable reduction in the length of time
available for flowering between fall-planted and winter-planted
lesquerella. For the 2008–2009 experiment, the average peak flow-
ering date was  April 20 (DOY 110; DAP 196) for the first planting. In
the second season, the fall-planted lesquerella did not experience
the prolonged flowering period as was observed in the previous
season. Rather, flowering peaked abruptly and then permanently
declined. A similar result was  observed using the canopy spectral
reflectance approach (Thorp et al., 2011). Peak flowering for the sec-
ond and third planting dates occurred on May  6 (DOY 126; DAP 118)
and May  21 (DOY 141; DAP 104), respectively. These peak flower
dates were a few weeks earlier than that obtained from the spectral
reflectance approach; however, the general flowering patterns and
peak mean flower counts estimated with the two  methods were
reasonably similar.

3.5. Relevance to past studies

In the present study and a companion study (Thorp et al., 2011),
we have demonstrated two  approaches for remotely monitor-
ing lesquerella flowering patterns: the previous approach based
on canopy spectral reflectance measurements and the present
approach using digital images of the canopy. There are several
trade-offs between the two approaches. To complete the previ-
ous study, we implemented a hand-held spectroradiometer valued
at roughly $20,000. Likely, more inexpensive radiometers could
be developed specifically for lesquerella flower detection if suffi-
cient demand existed. However, this type of instrument does not
yet exist. In the present study, we obtained better results using
a consumer-grade digital camera valued at roughly $800. Likely,
lesquerella growers or breeders already own a digital camera that
could be used to sufficiently replicate the results of the present
study. Several types of platforms could be developed for digital

image collection, including hand-held systems, tractor-mounted
systems, or field stationary platforms. Given the dynamic nature of
lesquerella flowering patterns, we  favor the latter approach with
wireless transmission of images to a computer dedicated for image
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Fig. 8. Mean estimated flower count using the images collected along line

rocessing. In this way, lesquerella canopies could be monitored on
 sub-hourly basis. One drawback to the digital imaging approach is
hat one camera can cover only a small spatial extent, on the order
f a few meters. Vehicle-mounted cameras could be designed to
ap  an entire field, but such a system would be inefficient with

he time required to collect and process the images. The other
ption for wider spatial coverage is to collect images at a higher
ltitude from aerial or satellite platforms. However, the image pro-
essing routines developed in the present study would not apply
o images collected from high altitude, and the spectral reflectance
pproaches of the previous study would be required.

Image processing algorithms developed in the present study
efine the algorithms developed previously by Adamsen et al.
2000). The most fundamental difference between the present
pproach and that of Adamsen et al. (2000) is the inclusion of the
mage transformation to the HSI color space. This step decoupled
he image intensity from the color information (hue and satura-
ion) such that image thresholding could be more directly based on
he color components of the image. The advantage of this is most
ffectively demonstrated by the relatively low variability in the hue
arameter for images collected over a wide range of conditions
Table 2). Maximum and minimum hue and maximum saturation
arameters for segmentation of yellow lesquerella flowers were
uite narrowly defined and were quite stable in the HSI color space.
se of the Monte Carlo approach to address larger uncertainties

n the remaining parameters resulted in a much more computa-
ionally intensive algorithm than that of Adamsen et al. (2000).
owever, refinement of the image collection protocols based on

he results of our HSI transformation should reduce this parame-
er variation, which is likely attributable to variability in outdoor
ighting conditions. For example, incorporation of an appropri-
te shading mechanism to block the direct solar beam or use of
ash bulbs for consistent canopy illumination would likely pro-
ide images with reduced intensity variation. Appropriate shading
f the image scene should also reduce hot spots that cause larger
ariation in the minimum saturation parameter (Table 2). These

odifications to the image collection protocol may  eliminate the

eed for Monte Carlo analysis and may  allow for image thresh-
lding based on a set of well-defined, well-controlled, and highly
eaningful HSI parameters.
nsects from January to July in the (a) 2008 and (b) 2009 growing seasons.

4. Conclusions

Vibrant yellow flowers are prominently displayed at the top
of lesquerella canopies throughout anthesis. This characteristic
permits the development of remote techniques for monitoring
the lesquerella flowering process. Because lesquerella flowering is
indeterminate in nature and also quite dynamic, digital image pro-
cessing can be used to track flowering patterns and to identify key
growth stages, such as peak flowering and flowering decline. Such
information is useful for determining the optimum times for irri-
gation cut-off, desiccant application, crop harvest, or installation
of bee boxes to maximize pollination. Since lesquerella in Arizona
will likely be produced as a winter annual in rotation with cot-
ton or a bioenergy crop, earlier lesquerella harvest dates allow
more flexibility to plan field activities for the summer crop. The
image processing techniques developed here could also be used
in breeding programs to select cultivars that exhibit more desir-
able developmental characteristics for lesquerella, such as earlier
peak flowering dates. Future work will provide techniques for pre-
dicting yield based on in-season lesquerella flowering patterns. We
will also focus on improving our data collection protocol in the
future. Improved ability to predict flower count from image-based
flower cover is likely possible with better temporal correspon-
dence between biomass sampling and image collection. Improved
image segmentation is also likely with the development of appro-
priate shading mechanisms for better control of the intensity and
saturation characteristics of the images. Our methods are quite sim-
ple and practical, requiring only a digital camera and the image
processing algorithms. The algorithms are also quite generic and
could be easily applied for many other digital image processing
applications that require image segmentation based on color fea-
tures.
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